
HSAIL:

PORTABLE COMPILER IR FOR HSA

HOT CHIPS TUTORIAL - AUGUST 2013

BEN SANDER

AMD SENIOR FELLOW

STATE OF GPU COMPUTING

Today’s Challenges

 Separate address spaces

 Copies

 Can’t share pointers

 New language required for compute kernel

 EX: OpenCL™ runtime API

 Compute kernel compiled separately than

host code

Emerging Solution

 HSA Hardware

 Single address space

 Coherent

 Virtual

 Fast access from all components

 Can share pointers

 Bring GPU computing to existing, popular,

programming models

 Single-source, fully supported by

compiler

 HSAIL compiler IR (Cross-platform!)

• GPUs are fast and power efficient : high compute density per-mm and per-watt

• But: Can be hard to program

PCIe

WHAT IS HSAIL?

 HSAIL is the intermediate language for parallel compute in HSA

 Generated by a high level compiler (LLVM, gcc, Java VM, etc)

 Low-level IR, close to machine ISA level

 Compiled down to target ISA by an IHV “Finalizer”

 Finalizer may execute at run time, install time, or build time

 Example: OpenCL™ Compilation Stack using HSAIL

© Copyright 2012 HSA Foundation. All Rights Reserved. 3

OpenCL™ Kernel

High-Level Compiler Flow (Developer)

Finalizer Flow (Runtime)

EDG or CLANG

SPIR

LLVM

HSAIL HSAIL

Finalizer

Hardware ISA

KEY HSAIL FEATURES

 Parallel

 Shared virtual memory

 Portable across vendors in HSA Foundation

 Stable across multiple product generations

 Consistent numerical results (IEEE-754 with defined min accuracy)

 Fast, robust, simple finalization step (no monthly updates)

 Good performance (little need to write in ISA)

 Supports all of OpenCL™ and C++ AMP™

 Support Java, C++, and other languages as well

© Copyright 2012 HSA Foundation. All Rights Reserved. 4

AGENDA

 Introduction

 HSA Parallel Execution Model

 HSAIL Instruction Set

 Example – in Java!

 Key Takeaways

HSA PARALLEL EXECUTION

MODEL

© Copyright 2012 HSA Foundation. All Rights Reserved. 6

HSA PARALLEL EXECUTION MODEL

© Copyright 2012 HSA Foundation. All Rights Reserved. 7

Basic Idea:

Programmer supplies a

“kernel” that is run on

each work-item. Kernel is

written as a single thread

of execution.

Each work-item has a

unique coordinate.

Programmer specifies grid

dimensions (for scope of

problem).

Programmer optionally

specifies work-group

dimensions (for optimized

communication).

CONVOLUTION / SOBEL EDGE FILTER

Gx = [-1 0 +1]

 [-2 0 +2]

 [-1 0 +1]

Gy = [-1 -2 -1]

 [0 0 0]

 [+1 +2 +1]

G = sqrt(Gx
2 + Gy

2)

CONVOLUTION / SOBEL EDGE FILTER

Gx = [-1 0 +1]

 [-2 0 +2]

 [-1 0 +1]

Gy = [-1 -2 -1]

 [0 0 0]

 [+1 +2 +1]

G = sqrt(Gx
2 + Gy

2)

2D grid

workitem

kernel

CONVOLUTION / SOBEL EDGE FILTER

Gx = [-1 0 +1]

 [-2 0 +2]

 [-1 0 +1]

Gy = [-1 -2 -1]

 [0 0 0]

 [+1 +2 +1]

G = sqrt(Gx
2 + Gy

2)

2D work-group

2D grid

workitem

kernel

HSAIL INSTRUCTION SET

© Copyright 2012 HSA Foundation. All Rights Reserved. 11

HSAIL INSTRUCTION SET - OVERVIEW

 Similar to assembly language for a RISC CPU

 Load-store architecture

 ld_global_u64 $d0, [$d6 + 120] ; $d0= load($d6+120)

 add_u64 $d1, $d2, 24 ; $d1= $d2+24

 136 opcodes (Java™ bytecode has 200)

 Floating point (single, double, half (f16))

 Integer (32-bit, 64-bit)

 Some packed operations

 Branches

 Function calls

 Platform Atomic Operations: and, or, xor, exch, add, sub, inc, dec, max, min, cas

 Synchronize host CPU and HSA Component!

 Text and Binary formats (“BRIG”)

SEGMENTS AND MEMORY (1/2)

 7 segments of memory

 global, readonly, group, spill, private, arg, kernarg,

 Memory instructions can (optionally) specify a segment

 Global Segment

 Visible to all HSA agents (including host CPU)

 Group Segment

 Provides high-performance memory shared in the work-group.

 Group memory can be read and written by any work-item in the work-group

 HSAIL provides sync operations to control visibility of group memory

 Useful for expert programmers

 Spill, Private, Arg Segments

 Represent different regions of a per-work-item stack

 Typically generated by compiler, not specified by programmer

 Compiler can use these to convey intent – ie spills

© Copyright 2012 HSA Foundation. All Rights Reserved. 13

ld_global_u64 $d0, [$d6]

ld_group_u64 $d0,[$d6+24]

st_spill_f32 $s1,[$d6+4]

SEGMENTS AND MEMORY (2/2)

 Kernarg Segment

 Programmer writes kernarg segment to pass arguments to a kernel

 Read-Only Segment

 Remains constant during execution of kernel

 Flat Addressing

 Each segment mapped into virtual address space

 Flat addresses can map to segments based on virtual address

 Instructions with no explicit segment use flat addressing

 Very useful for high-level language support (ie classes, libraries)

 Aligns well with OpenCL 2.0 “generic” addressing feature

© Copyright 2012 HSA Foundation. All Rights Reserved. 14

ld_kernarg_u64 $d6, [%_arg0]

ld_u64 $d0,[$d6+24] ; flat

REGISTERS

 Four classes of registers

 C: 1-bit, Control Registers

 S: 32-bit, Single-precision FP or Int

 D: 64-bit, Double-precision FP or Long Int

 Q: 128-bit, Packed data.

 Fixed number of registers:

 8 C

 S, D, Q share a single pool of resources

 S + 2*D + 4*Q <= 128

 Up to 128 S or 64 D or 32 Q (or a blend)

 Register allocation done in high-level compiler

 Finalizer doesn’t have to perform expensive register allocation

© Copyright 2012 HSA Foundation. All Rights Reserved. 15

SIMT EXECUTION MODEL

 HSAIL Presents a “SIMT” execution model to the programmer

 “Single Instruction, Multiple Thread”

 Programmer writes program for a single thread of execution

 Each work-item appears to have its own program counter

 Branch instructions look natural

 Hardware Implementation

 Most hardware uses SIMD (Single-Instruction Multiple Data) vectors for efficiency

 Actually one program counter for the entire SIMD instruction

 Branches implemented with predication

 SIMT Advantages

 Easier to program (branch code in particular)

 Natural path for mainstream programming models

 Scales across a wide variety of hardware (programmer doesn’t see vector width)

 Cross-lane operations available for those who want peak performance

© Copyright 2012 HSA Foundation. All Rights Reserved. 16

WAVEFRONTS

 Hardware SIMD vector, composed of 1, 2, 4, 8, 16, 32, or 64 “lanes”

 Lanes in wavefront can be “active” or “inactive”

 Inactive lanes consume hardware resources but don’t do useful work

 Tradeoffs

 “Wavefront-aware” programming can be useful for peak performance

 But results in less portable code (since wavefront width is encoded in algorithm)

© Copyright 2012 HSA Foundation. All Rights Reserved. 17

if (cond) {

 operationA; // cond=True lanes active here

} else {

 operationB; // cond=False lanes active here

}

CROSS-LANE OPERATIONS

 Example HSAIL operation: “countlane”

 Dest set to the number of work-items in current wavefront that have non-zero source

 Example HSAIL operation: “countuplane”

 Dest set to count of earlier work-items that are active for this instruction

 Useful for compaction algorithms

© Copyright 2012 HSA Foundation. All Rights Reserved. 18

countuplane_u32 $s0

countlane_u32 $s0, $s6

HSAIL MODES

 Working group strived to limit optional modes and features in HSAIL

 Minimize differences between HSA target machines

 Better for compiler vendors and application developers

 Two modes survived

 Machine Models

 Small: 32-bit pointers, 32-bit data

 Large: 64-bit pointers, 32-bit or 64-bit data

 Vendors can support one or both models

 “Base” and “Full” Profiles

 Two sets of requirements for FP accuracy, rounding, exception reporting

© Copyright 2012 HSA Foundation. All Rights Reserved. 19

HSA PROFILES

© Copyright 2012 HSA Foundation. All Rights Reserved. 20

Feature Base Full

Addressing Modes Small, Large Small, Large

Load/store conversion of all floating point
types (f16, f32, f64) Yes Yes

All 32-bit HSAIL operations according to the
declared profile Yes Yes

F16 support (IEEE 754 or better) Yes Yes

F64 support No Yes

Precision for add/sub/mul 1/2 ULP 1/2 ULP

Precision for div 2.5 ULP 1/2 ULP

Precision for sqrt 1 ULP 1/2 ULP

HSAIL Rounding: Near Yes Yes

HSAIL Rounding: Up No Yes

HSAIL Rounding: Down No Yes

HSAIL Rounding: Zero No Yes

Subnormal floating-point Flush-to-zero Supported

Propagate NaN Payloads No Yes

FMA No Yes

Arithmetic Exception reporting DETECT
DETECT or
BREAK

Debug trap Yes Yes

EXAMPLE

© Copyright 2012 HSA Foundation. All Rights Reserved. 21

AN EXAMPLE (IN JAVA 8™)

© Copyright 2012 HSA Foundation. All Rights Reserved. 22

class Player {

 private Team team;

 private int scores;

 private float pctOfTeamScores;

 public Team getTeam() {return team;}

 public int getScores() {return scores;}

 public void setPctOfTeamScores(int pct) { pctOfTeamScores = pct; }

};

// “Team” class not shown

// Assume “allPlayers’ is an initialized array of Players..

Stream<Player> s = Arrays.stream(allPlayers).parallel();

s.forEach(p -> {

 int teamScores = p.getTeam().getScores();

 float pctOfTeamScores = (float)p.getScores()/(float) teamScores;

 p.setPctOfTeamScores(pctOfTeamScores);

 });

HSAIL CODE EXAMPLE

© Copyright 2012 HSA Foundation. All Rights Reserved. 23

01: version 0:95: $full : $large;

02: // static method HotSpotMethod<Main.lambda$2(Player)>

03: kernel &run (

04: kernarg_u64 %_arg0 // Kernel signature for lambda method

05:) {

06: ld_kernarg_u64 $d6, [%_arg0]; // Move arg to an HSAIL register

07: workitemabsid_u32 $s2, 0; // Read the work-item global “X” coord

08:

09: cvt_u64_s32 $d2, $s2; // Convert X gid to long

10: mul_u64 $d2, $d2, 8; // Adjust index for sizeof ref

11: add_u64 $d2, $d2, 24; // Adjust for actual elements start

12: add_u64 $d2, $d2, $d6; // Add to array ref ptr

13: ld_global_u64 $d6, [$d2]; // Load from array element into reg

14: @L0:

15: ld_global_u64 $d0, [$d6 + 120]; // p.getTeam()

16: mov_b64 $d3, $d0;

17: ld_global_s32 $s3, [$d6 + 40]; // p.getScores ()

18: cvt_f32_s32 $s16, $s3;

19: ld_global_s32 $s0, [$d0 + 24]; // Team getScores()

20: cvt_f32_s32 $s17, $s0;

21: div_f32 $s16, $s16, $s17; // p.getScores()/teamScores

22: st_global_f32 $s16, [$d6 + 100]; // p.setPctOfTeamScores()

23: ret;

24: };

WHAT IS HSAIL?

 HSAIL is the intermediate language for parallel compute in HSA

 Generated by a high level compiler (LLVM, gcc, Java VM, etc)

 Low-level IR, close to machine ISA level

 Compiled down to target ISA by an IHV “Finalizer”

 Finalizer may execute at run time, install time, or build time

 Example: OpenCL™ Compilation Stack using HSAIL

© Copyright 2012 HSA Foundation. All Rights Reserved. 24

OpenCL™ Kernel

High-Level Compiler Flow (Developer)

Finalizer Flow (Runtime)

EDG or CLANG

SPIR

LLVM

HSAIL HSAIL

Finalizer

Hardware ISA

HSAIL AND SPIR

© Copyright 2012 HSA Foundation. All Rights Reserved. 25

Feature HSAIL SPIR

Intended Users
Compiler developers who want to
control their own code generation.

Compiler developers who want a fast
path to acceleration across a wide
variety of devices.

IR Level
Low-level, just above the machine
instruction set High-level, just below LLVM-IR

Back-end code generation Thin, fast, robust.

Flexible. Can include many
optimizations and compiler
transformation including register
allocation.

Where are compiler
optimizations performed?

Most done in high-level compiler,
before HSAIL generation.

Most done in back-end code generator,
between SPIR and device machine
instruction set

Registers Fixed-size register pool Infinite
SSA Form No Yes
Binary format Yes Yes
Code generator for LLVM Yes Yes

Back-end device targets

Modern GPU architectures
supported by members of the HSA
Foundation

Any OpenCL device including GPUs,
CPUs, FPGAs

Memory Model

Relaxed consistency with
acquire/release, barriers, and fine-
grained barriers

Flexible. Can support the OpenCL 1.2
Memory Model

TAKEAWAYS

 HSAIL Key Points

 Thin, robust, fast finalizer

 Portable (multiple HW vendors and parallel architectures)

 Complements OpenCL™

 Supports shared virtual memory and platform atomics

 HSA brings GPU computing to mainstream programming models

 Shared and coherent memory bridges “faraway accelerator” gap

 HSAIL provides the common IL for high-level languages to benefit from

parallel computing

 Java Example

 Unmodified Java8 accelerated on the GPU!

 Can use pointer-containing data structures

© Copyright 2012 HSA Foundation. All Rights Reserved. 26

TOOLS ARE AVAILABLE NOW

 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and

Programming Model, Compiler Writer’s Guide, and Object Format (BRIG)

 http://hsafoundation.com/standards/

 https://hsafoundation.box.com/s/m6mrsjv8b7r50kqeyyal

 Tools now at GitHUB – HSA Foundation

 libHSA Assembler and Disassembler

 https://github.com/HSAFoundation/HSAIL-Tools

 HSAIL Instruction Set Simulator

 https://github.com/HSAFoundation/HSAIL-Instruction-Set-Simulator

 Soon: LLVM Compilation stack which outputs HSAIL and BRIG

 Java compiler for HSAIL (preliminary)

 http://openjdk.java.net/projects/sumatra/)

 http://openjdk.java.net/projects/graal/

© Copyright 2012 HSA Foundation. All Rights Reserved. 27

http://hsafoundation.com/standards/
http://hsafoundation.com/standards/
https://hsafoundation.box.com/s/m6mrsjv8b7r50kqeyyal
https://github.com/HSAFoundation/HSAIL-Tools
https://github.com/HSAFoundation/HSAIL-Tools
https://github.com/HSAFoundation/HSAIL-Tools
https://github.com/HSAFoundation/HSAIL-Instruction-Set-Simulator
https://github.com/HSAFoundation/HSAIL-Instruction-Set-Simulator
https://github.com/HSAFoundation/HSAIL-Instruction-Set-Simulator
https://github.com/HSAFoundation/HSAIL-Instruction-Set-Simulator
https://github.com/HSAFoundation/HSAIL-Instruction-Set-Simulator
https://github.com/HSAFoundation/HSAIL-Instruction-Set-Simulator
https://github.com/HSAFoundation/HSAIL-Instruction-Set-Simulator
http://openjdk.java.net/projects/sumatra/
http://openjdk.java.net/projects/graal/
http://openjdk.java.net/projects/graal/

BACKUP

© Copyright 2012 HSA Foundation. All Rights Reserved. 28

OPPORTUNITIES WITH LLVM BASED

COMPILATION

LLVM

CLANG

C99 C++ 11 C++AMP Objective C OpenCL OpenMP KL OSL
Render

script
UPC Rust

Halide Julia Mono Fortran Haskell

AN EXAMPLE (IN OPENCL™)

© Copyright 2012 HSA Foundation. All Rights Reserved. 30

//Vector add

// A[0:N-1] = B[0:N-1] + C[0:N-1]

__kernel void vec_add (

 __global const float *a,

__global const float *b,

__global float *c,

const unsigned int n)

{

// Get our global thread ID

int id = get_global_id(0);

// Make sure we do not go out of bounds

if (id < n)

 c[id] = a[id] + b[id];

}

HSAIL VECTOR ADD

© Copyright 2012 HSA Foundation. All Rights Reserved. 31

version 1:0:$full:$small;

function &get_global_id(arg_u32 %ret_val)

(arg_u32 %arg_val0);

function &abort() ();

kernel &__OpenCL_vec_add_kernel(

kernarg_u32 %arg_val0,

kernarg_u32 %arg_val1,

kernarg_u32 %arg_val2,

kernarg_u32 %arg_val3)

{

@__OpenCL_vec_add_kernel_entry:

// BB#0: // %entry

ld_kernarg_u32 $s0, [%arg_val3];

workitemabsid_u32 $s1, 0;

cmp_lt_b1_u32 $c0, $s1, $s0;

ld_kernarg_u32 $s0, [%arg_val2];

ld_kernarg_u32 $s2, [%arg_val1];

ld_kernarg_u32 $s3, [%arg_val0];

cbr $c0, @BB0_2;

brn @BB0_1;

@BB0_1: // %if.end

ret;

@BB0_2: // %if.then

shl_u32 $s1, $s1, 2;

add_u32 $s2, $s2, $s1;

ld_global_f32 $s2, [$s2];

add_u32 $s3, $s3, $s1;

ld_global_f32 $s3, [$s3];

add_f32 $s2, $s3, $s2;

add_u32 $s0, $s0, $s1;

st_global_f32 $s2, [$s0];

brn @BB0_1;

};

SEGMENTS

© Copyright 2012 HSA Foundation. All Rights Reserved. 32

