
HSAIL:

PORTABLE COMPILER IR FOR HSA

HOT CHIPS TUTORIAL - AUGUST 2013

BEN SANDER

AMD SENIOR FELLOW

STATE OF GPU COMPUTING

Today’s Challenges

 Separate address spaces

 Copies

 Can’t share pointers

 New language required for compute kernel

 EX: OpenCL™ runtime API

 Compute kernel compiled separately than

host code

Emerging Solution

 HSA Hardware

 Single address space

 Coherent

 Virtual

 Fast access from all components

 Can share pointers

 Bring GPU computing to existing, popular,

programming models

 Single-source, fully supported by

compiler

 HSAIL compiler IR (Cross-platform!)

• GPUs are fast and power efficient : high compute density per-mm and per-watt

• But: Can be hard to program

PCIe

WHAT IS HSAIL?

 HSAIL is the intermediate language for parallel compute in HSA

 Generated by a high level compiler (LLVM, gcc, Java VM, etc)

 Low-level IR, close to machine ISA level

 Compiled down to target ISA by an IHV “Finalizer”

 Finalizer may execute at run time, install time, or build time

 Example: OpenCL™ Compilation Stack using HSAIL

© Copyright 2012 HSA Foundation. All Rights Reserved. 3

OpenCL™ Kernel

High-Level Compiler Flow (Developer)

Finalizer Flow (Runtime)

EDG or CLANG

SPIR

LLVM

HSAIL HSAIL

Finalizer

Hardware ISA

KEY HSAIL FEATURES

 Parallel

 Shared virtual memory

 Portable across vendors in HSA Foundation

 Stable across multiple product generations

 Consistent numerical results (IEEE-754 with defined min accuracy)

 Fast, robust, simple finalization step (no monthly updates)

 Good performance (little need to write in ISA)

 Supports all of OpenCL™ and C++ AMP™

 Support Java, C++, and other languages as well

© Copyright 2012 HSA Foundation. All Rights Reserved. 4

AGENDA

 Introduction

 HSA Parallel Execution Model

 HSAIL Instruction Set

 Example – in Java!

 Key Takeaways

HSA PARALLEL EXECUTION

MODEL

© Copyright 2012 HSA Foundation. All Rights Reserved. 6

HSA PARALLEL EXECUTION MODEL

© Copyright 2012 HSA Foundation. All Rights Reserved. 7

Basic Idea:

Programmer supplies a

“kernel” that is run on

each work-item. Kernel is

written as a single thread

of execution.

Each work-item has a

unique coordinate.

Programmer specifies grid

dimensions (for scope of

problem).

Programmer optionally

specifies work-group

dimensions (for optimized

communication).

CONVOLUTION / SOBEL EDGE FILTER

Gx = [-1 0 +1]

 [-2 0 +2]

 [-1 0 +1]

Gy = [-1 -2 -1]

 [0 0 0]

 [+1 +2 +1]

G = sqrt(Gx
2 + Gy

2)

CONVOLUTION / SOBEL EDGE FILTER

Gx = [-1 0 +1]

 [-2 0 +2]

 [-1 0 +1]

Gy = [-1 -2 -1]

 [0 0 0]

 [+1 +2 +1]

G = sqrt(Gx
2 + Gy

2)

2D grid

workitem

kernel

CONVOLUTION / SOBEL EDGE FILTER

Gx = [-1 0 +1]

 [-2 0 +2]

 [-1 0 +1]

Gy = [-1 -2 -1]

 [0 0 0]

 [+1 +2 +1]

G = sqrt(Gx
2 + Gy

2)

2D work-group

2D grid

workitem

kernel

HSAIL INSTRUCTION SET

© Copyright 2012 HSA Foundation. All Rights Reserved. 11

HSAIL INSTRUCTION SET - OVERVIEW

 Similar to assembly language for a RISC CPU

 Load-store architecture

 ld_global_u64 $d0, [$d6 + 120] ; $d0= load($d6+120)

 add_u64 $d1, $d2, 24 ; $d1= $d2+24

 136 opcodes (Java™ bytecode has 200)

 Floating point (single, double, half (f16))

 Integer (32-bit, 64-bit)

 Some packed operations

 Branches

 Function calls

 Platform Atomic Operations: and, or, xor, exch, add, sub, inc, dec, max, min, cas

 Synchronize host CPU and HSA Component!

 Text and Binary formats (“BRIG”)

SEGMENTS AND MEMORY (1/2)

 7 segments of memory

 global, readonly, group, spill, private, arg, kernarg,

 Memory instructions can (optionally) specify a segment

 Global Segment

 Visible to all HSA agents (including host CPU)

 Group Segment

 Provides high-performance memory shared in the work-group.

 Group memory can be read and written by any work-item in the work-group

 HSAIL provides sync operations to control visibility of group memory

 Useful for expert programmers

 Spill, Private, Arg Segments

 Represent different regions of a per-work-item stack

 Typically generated by compiler, not specified by programmer

 Compiler can use these to convey intent – ie spills

© Copyright 2012 HSA Foundation. All Rights Reserved. 13

ld_global_u64 $d0, [$d6]

ld_group_u64 $d0,[$d6+24]

st_spill_f32 $s1,[$d6+4]

SEGMENTS AND MEMORY (2/2)

 Kernarg Segment

 Programmer writes kernarg segment to pass arguments to a kernel

 Read-Only Segment

 Remains constant during execution of kernel

 Flat Addressing

 Each segment mapped into virtual address space

 Flat addresses can map to segments based on virtual address

 Instructions with no explicit segment use flat addressing

 Very useful for high-level language support (ie classes, libraries)

 Aligns well with OpenCL 2.0 “generic” addressing feature

© Copyright 2012 HSA Foundation. All Rights Reserved. 14

ld_kernarg_u64 $d6, [%_arg0]

ld_u64 $d0,[$d6+24] ; flat

REGISTERS

 Four classes of registers

 C: 1-bit, Control Registers

 S: 32-bit, Single-precision FP or Int

 D: 64-bit, Double-precision FP or Long Int

 Q: 128-bit, Packed data.

 Fixed number of registers:

 8 C

 S, D, Q share a single pool of resources

 S + 2*D + 4*Q <= 128

 Up to 128 S or 64 D or 32 Q (or a blend)

 Register allocation done in high-level compiler

 Finalizer doesn’t have to perform expensive register allocation

© Copyright 2012 HSA Foundation. All Rights Reserved. 15

SIMT EXECUTION MODEL

 HSAIL Presents a “SIMT” execution model to the programmer

 “Single Instruction, Multiple Thread”

 Programmer writes program for a single thread of execution

 Each work-item appears to have its own program counter

 Branch instructions look natural

 Hardware Implementation

 Most hardware uses SIMD (Single-Instruction Multiple Data) vectors for efficiency

 Actually one program counter for the entire SIMD instruction

 Branches implemented with predication

 SIMT Advantages

 Easier to program (branch code in particular)

 Natural path for mainstream programming models

 Scales across a wide variety of hardware (programmer doesn’t see vector width)

 Cross-lane operations available for those who want peak performance

© Copyright 2012 HSA Foundation. All Rights Reserved. 16

WAVEFRONTS

 Hardware SIMD vector, composed of 1, 2, 4, 8, 16, 32, or 64 “lanes”

 Lanes in wavefront can be “active” or “inactive”

 Inactive lanes consume hardware resources but don’t do useful work

 Tradeoffs

 “Wavefront-aware” programming can be useful for peak performance

 But results in less portable code (since wavefront width is encoded in algorithm)

© Copyright 2012 HSA Foundation. All Rights Reserved. 17

if (cond) {

 operationA; // cond=True lanes active here

} else {

 operationB; // cond=False lanes active here

}

CROSS-LANE OPERATIONS

 Example HSAIL operation: “countlane”

 Dest set to the number of work-items in current wavefront that have non-zero source

 Example HSAIL operation: “countuplane”

 Dest set to count of earlier work-items that are active for this instruction

 Useful for compaction algorithms

© Copyright 2012 HSA Foundation. All Rights Reserved. 18

countuplane_u32 $s0

countlane_u32 $s0, $s6

HSAIL MODES

 Working group strived to limit optional modes and features in HSAIL

 Minimize differences between HSA target machines

 Better for compiler vendors and application developers

 Two modes survived

 Machine Models

 Small: 32-bit pointers, 32-bit data

 Large: 64-bit pointers, 32-bit or 64-bit data

 Vendors can support one or both models

 “Base” and “Full” Profiles

 Two sets of requirements for FP accuracy, rounding, exception reporting

© Copyright 2012 HSA Foundation. All Rights Reserved. 19

HSA PROFILES

© Copyright 2012 HSA Foundation. All Rights Reserved. 20

Feature Base Full

Addressing Modes Small, Large Small, Large

Load/store conversion of all floating point
types (f16, f32, f64) Yes Yes

All 32-bit HSAIL operations according to the
declared profile Yes Yes

F16 support (IEEE 754 or better) Yes Yes

F64 support No Yes

Precision for add/sub/mul 1/2 ULP 1/2 ULP

Precision for div 2.5 ULP 1/2 ULP

Precision for sqrt 1 ULP 1/2 ULP

HSAIL Rounding: Near Yes Yes

HSAIL Rounding: Up No Yes

HSAIL Rounding: Down No Yes

HSAIL Rounding: Zero No Yes

Subnormal floating-point Flush-to-zero Supported

Propagate NaN Payloads No Yes

FMA No Yes

Arithmetic Exception reporting DETECT
DETECT or
BREAK

Debug trap Yes Yes

EXAMPLE

© Copyright 2012 HSA Foundation. All Rights Reserved. 21

AN EXAMPLE (IN JAVA 8™)

© Copyright 2012 HSA Foundation. All Rights Reserved. 22

class Player {

 private Team team;

 private int scores;

 private float pctOfTeamScores;

 public Team getTeam() {return team;}

 public int getScores() {return scores;}

 public void setPctOfTeamScores(int pct) { pctOfTeamScores = pct; }

};

// “Team” class not shown

// Assume “allPlayers’ is an initialized array of Players..

Stream<Player> s = Arrays.stream(allPlayers).parallel();

s.forEach(p -> {

 int teamScores = p.getTeam().getScores();

 float pctOfTeamScores = (float)p.getScores()/(float) teamScores;

 p.setPctOfTeamScores(pctOfTeamScores);

 });

HSAIL CODE EXAMPLE

© Copyright 2012 HSA Foundation. All Rights Reserved. 23

01: version 0:95: $full : $large;

02: // static method HotSpotMethod<Main.lambda$2(Player)>

03: kernel &run (

04: kernarg_u64 %_arg0 // Kernel signature for lambda method

05:) {

06: ld_kernarg_u64 $d6, [%_arg0]; // Move arg to an HSAIL register

07: workitemabsid_u32 $s2, 0; // Read the work-item global “X” coord

08:

09: cvt_u64_s32 $d2, $s2; // Convert X gid to long

10: mul_u64 $d2, $d2, 8; // Adjust index for sizeof ref

11: add_u64 $d2, $d2, 24; // Adjust for actual elements start

12: add_u64 $d2, $d2, $d6; // Add to array ref ptr

13: ld_global_u64 $d6, [$d2]; // Load from array element into reg

14: @L0:

15: ld_global_u64 $d0, [$d6 + 120]; // p.getTeam()

16: mov_b64 $d3, $d0;

17: ld_global_s32 $s3, [$d6 + 40]; // p.getScores ()

18: cvt_f32_s32 $s16, $s3;

19: ld_global_s32 $s0, [$d0 + 24]; // Team getScores()

20: cvt_f32_s32 $s17, $s0;

21: div_f32 $s16, $s16, $s17; // p.getScores()/teamScores

22: st_global_f32 $s16, [$d6 + 100]; // p.setPctOfTeamScores()

23: ret;

24: };

WHAT IS HSAIL?

 HSAIL is the intermediate language for parallel compute in HSA

 Generated by a high level compiler (LLVM, gcc, Java VM, etc)

 Low-level IR, close to machine ISA level

 Compiled down to target ISA by an IHV “Finalizer”

 Finalizer may execute at run time, install time, or build time

 Example: OpenCL™ Compilation Stack using HSAIL

© Copyright 2012 HSA Foundation. All Rights Reserved. 24

OpenCL™ Kernel

High-Level Compiler Flow (Developer)

Finalizer Flow (Runtime)

EDG or CLANG

SPIR

LLVM

HSAIL HSAIL

Finalizer

Hardware ISA

HSAIL AND SPIR

© Copyright 2012 HSA Foundation. All Rights Reserved. 25

Feature HSAIL SPIR

Intended Users
Compiler developers who want to
control their own code generation.

Compiler developers who want a fast
path to acceleration across a wide
variety of devices.

IR Level
Low-level, just above the machine
instruction set High-level, just below LLVM-IR

Back-end code generation Thin, fast, robust.

Flexible. Can include many
optimizations and compiler
transformation including register
allocation.

Where are compiler
optimizations performed?

Most done in high-level compiler,
before HSAIL generation.

Most done in back-end code generator,
between SPIR and device machine
instruction set

Registers Fixed-size register pool Infinite
SSA Form No Yes
Binary format Yes Yes
Code generator for LLVM Yes Yes

Back-end device targets

Modern GPU architectures
supported by members of the HSA
Foundation

Any OpenCL device including GPUs,
CPUs, FPGAs

Memory Model

Relaxed consistency with
acquire/release, barriers, and fine-
grained barriers

Flexible. Can support the OpenCL 1.2
Memory Model

TAKEAWAYS

 HSAIL Key Points

 Thin, robust, fast finalizer

 Portable (multiple HW vendors and parallel architectures)

 Complements OpenCL™

 Supports shared virtual memory and platform atomics

 HSA brings GPU computing to mainstream programming models

 Shared and coherent memory bridges “faraway accelerator” gap

 HSAIL provides the common IL for high-level languages to benefit from

parallel computing

 Java Example

 Unmodified Java8 accelerated on the GPU!

 Can use pointer-containing data structures

© Copyright 2012 HSA Foundation. All Rights Reserved. 26

TOOLS ARE AVAILABLE NOW

 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and

Programming Model, Compiler Writer’s Guide, and Object Format (BRIG)

 http://hsafoundation.com/standards/

 https://hsafoundation.box.com/s/m6mrsjv8b7r50kqeyyal

 Tools now at GitHUB – HSA Foundation

 libHSA Assembler and Disassembler

 https://github.com/HSAFoundation/HSAIL-Tools

 HSAIL Instruction Set Simulator

 https://github.com/HSAFoundation/HSAIL-Instruction-Set-Simulator

 Soon: LLVM Compilation stack which outputs HSAIL and BRIG

 Java compiler for HSAIL (preliminary)

 http://openjdk.java.net/projects/sumatra/)

 http://openjdk.java.net/projects/graal/

© Copyright 2012 HSA Foundation. All Rights Reserved. 27

http://hsafoundation.com/standards/
http://hsafoundation.com/standards/
https://hsafoundation.box.com/s/m6mrsjv8b7r50kqeyyal
https://github.com/HSAFoundation/HSAIL-Tools
https://github.com/HSAFoundation/HSAIL-Tools
https://github.com/HSAFoundation/HSAIL-Tools
https://github.com/HSAFoundation/HSAIL-Instruction-Set-Simulator
https://github.com/HSAFoundation/HSAIL-Instruction-Set-Simulator
https://github.com/HSAFoundation/HSAIL-Instruction-Set-Simulator
https://github.com/HSAFoundation/HSAIL-Instruction-Set-Simulator
https://github.com/HSAFoundation/HSAIL-Instruction-Set-Simulator
https://github.com/HSAFoundation/HSAIL-Instruction-Set-Simulator
https://github.com/HSAFoundation/HSAIL-Instruction-Set-Simulator
http://openjdk.java.net/projects/sumatra/
http://openjdk.java.net/projects/graal/
http://openjdk.java.net/projects/graal/

BACKUP

© Copyright 2012 HSA Foundation. All Rights Reserved. 28

OPPORTUNITIES WITH LLVM BASED

COMPILATION

LLVM

CLANG

C99 C++ 11 C++AMP Objective C OpenCL OpenMP KL OSL
Render

script
UPC Rust

Halide Julia Mono Fortran Haskell

AN EXAMPLE (IN OPENCL™)

© Copyright 2012 HSA Foundation. All Rights Reserved. 30

//Vector add

// A[0:N-1] = B[0:N-1] + C[0:N-1]

__kernel void vec_add (

 __global const float *a,

__global const float *b,

__global float *c,

const unsigned int n)

{

// Get our global thread ID

int id = get_global_id(0);

// Make sure we do not go out of bounds

if (id < n)

 c[id] = a[id] + b[id];

}

HSAIL VECTOR ADD

© Copyright 2012 HSA Foundation. All Rights Reserved. 31

version 1:0:$full:$small;

function &get_global_id(arg_u32 %ret_val)

(arg_u32 %arg_val0);

function &abort() ();

kernel &__OpenCL_vec_add_kernel(

kernarg_u32 %arg_val0,

kernarg_u32 %arg_val1,

kernarg_u32 %arg_val2,

kernarg_u32 %arg_val3)

{

@__OpenCL_vec_add_kernel_entry:

// BB#0: // %entry

ld_kernarg_u32 $s0, [%arg_val3];

workitemabsid_u32 $s1, 0;

cmp_lt_b1_u32 $c0, $s1, $s0;

ld_kernarg_u32 $s0, [%arg_val2];

ld_kernarg_u32 $s2, [%arg_val1];

ld_kernarg_u32 $s3, [%arg_val0];

cbr $c0, @BB0_2;

brn @BB0_1;

@BB0_1: // %if.end

ret;

@BB0_2: // %if.then

shl_u32 $s1, $s1, 2;

add_u32 $s2, $s2, $s1;

ld_global_f32 $s2, [$s2];

add_u32 $s3, $s3, $s1;

ld_global_f32 $s3, [$s3];

add_f32 $s2, $s3, $s2;

add_u32 $s0, $s0, $s1;

st_global_f32 $s2, [$s0];

brn @BB0_1;

};

SEGMENTS

© Copyright 2012 HSA Foundation. All Rights Reserved. 32

